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1 Introduction

Evolutionary processes have been studied in the framework of Quantum Mechanics from

its early days. Even the first complete formulation of principles of Quantum Mechanics

described a way to find a time dependence of observables (Heisenberg eqs). In Quantum

Field Theory the common lore concerns mainly properties of vacua and perturbations

around them. Still, time dependent processes are crucial in various branches of QFT

(inflationary cosmology, QFT in curved spaces etc). These processes include a rolling of

a quantum field from a maximum of a potential, oscillations around a minimum and a

tunneling from one minimum of a potential to others.

In general, a study of time-dependent processes in QFT is prohibitively difficult. It

can be carried out, however, in large N vector models.

A large N vector model with a global O(N) symmetry is a rare example of a field

theory where an exact vacuum state can be found (for a review of large N models see [1]).

This model has served as a toy model for various problems common in QFT. A three-

dimensional scale-invariant model was shown to be quantumly conformal [2] and to possess

a non-trivial phase structure [3].

General eqs. which govern time-dependent processes in the large N vector model were

suggested in [4] and applied there to the case of d = 3. The applications included an

exact rolling solution of a φ6 model with vanishing energy and an approximate solutions

for oscillations around minima in a general potential. In all cases the quantum processes

were found to occur faster than their classical counterparts, signalizing a presence of terms

with time derivatives in addition to a known correction to a classical potential. A possible

tunneling in the model was also studied and the tunneling amplitude was found to be larger

than in the semiclassical computation.

The main difficulty in solving for time dependent processes in the large N model, as

discussed in [4], is a necessity to find a Green’s function of a differential operator which
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itself contains an unknown function. In this paper we show that this problem can be solved

in the case of d = 1, which corresponds to a large N quantum mechanics.

A large N quantum mechanics has been studied from various point of view. Numerous

approximations have been used in order to derive systematically a 1/N expansion (for a

review and a comparison of some approximation technics see [5], in [6] yet another approach

is suggested). A supersymmetric version of the large N quantum mechanics was also studied

(for improvements that supersymmetry brings to the large N expansion see [7]). A certain

supersymmetric version of the large N quantum mechanics was proposed as a description

of a D-brane probe in the bubbling supertubes [8].

In this paper we solve EOM’s derived in [4] for the quantum mechanics in the case

of unbroken global O(N) symmetry. We show that the expectation value of the quantum

field changes in time according to a classical EOM with a modified potential, which means

that the effective action in this case does not involve any corrections to the kinetic term,

the only correction being therefore that to the potential. All characteristics of the motion

(like frequencies of oscillations around minima of the effective potential and rolling times

in that potential, and possible types of the motion in general) can be derived by means of

the classical mechanics. In addition, a tunneling is completely suppressed.

The paper is organized as follows. In section 2 we review the large N models in general

and introduce eqs. that govern a time evolution of the quantum system. In section 3 we

rewrite a classical EOM in a form which is convenient for a comparison with the quantum

case. In section 4 we solve the quantum EOM’s. Section 5 is a summary of the results.

We end up with an appendix A where we show that there is no tunneling in the system in

the limit N → ∞ and confirm this result by conventional methods of quantum mechanics.

2 Scalar model in the large N limit. A review

Let us consider an O(N)-symmetric Euclidean action for an N -component scalar field ~φ in

d space-time dimensions

S
(

~φ
)

=

∫

[

1

2

(

∂µ
~φ
)2

+ NU

(

~φ2

N

)]

ddx . (2.1)

The potential has a Taylor expansion of the form

U

(

~φ2

N

)

=

∞
∑

n=1

g2n

2n

(

~φ2

N

)n

, (2.2)

with g2n kept fixed as N → ∞. The corresponding partition function is

Z =

∫

D~φe−S(~φ) . (2.3)

In order to use the fact that ~φ has many components insert the following representation of

unity into Z:

1 ∼
∫

Dρδ(~φ2 − Nρ) ∼
∫

DρDλe−i
R

λ

2
(~φ2−Nρ)ddx . (2.4)
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Now one can integrate over ~φ and obtain

Z =

∫

DρDλe−NSeff (ρ, λ) , (2.5)

where

Seff(ρ, λ) =
1

2

∫

[2U(ρ) − iλρ] ddx +
1

2
Tr ln (−� + iλ) . (2.6)

When N is large, this form of the path integral suggests to use the saddle point method

to calculate the integral. The two saddle point equations obtained by varying the auxiliary

fields ρ and λ are1

2U ′(ρ) = iλ, ρ = tr
1

−� + iλ
, (2.7)

This form of the saddle point equations is convenient in the case of constant fields.

These constant solutions can be found as extrema of the effective potential

Ueff(ρ) = U(ρ) +
2 − d

2 d
Γ

(

1 −
d

2

)− 2

d−2

(4πρ)
d

d−2 , (2.8)

together with the following value of the field λ:

iλ =

[

(4π)d/2ρ

Γ
(

1 − d
2

)

]
2

d−2

. (2.9)

The necessity of the second term in (2.8) is most clearly seen in d = 1, where the theory

becomes a quantum mechanics. In this case the effective potential is

Ueff(ρ)
∣

∣

∣

d=1
= U(ρ) +

1

8ρ
. (2.10)

Then, consider the case of U = g2

2 ρ, which corresponds to a system of N decoupled har-

monic oscillators. The last term in (2.8) shifts a minimum of the potential from ρ = 0 to a

correct value ρ = 1
2
√

g2
. Therefore this term takes into account a spreading of the ground

state wave function.

If the fields are not constant then, as shown in [4], the correct form of the equations is

2U ′(ρ(x)
)

= iλ(x), ρ(x) = G(x, x),
(

−2x + iλ(x)
)

G(x, y) = δ(x − y) (2.11)

where 2x is a Laplacian w.r.t. x.

A major role in the above equations in played by the Green’s function G(x, y). The

field ρ is equal to this function at coincident points. In QFT this is divergent and is to be

regularized. We will concentrate on the case of d = 1 where no regularization is needed.

The main difficulty in solving equations (2.11) stems from the fact that G(x, y) is a

Green’s function of the operator which involves an unknown function λ(x). In [4] there was

found a particular exact solution of these equations for d = 3 and a potential U(ρ) = g6

6 ρ3,

which corresponds to a model ~φ6. The particular solution found there corresponds to a

1We use here the definition Tr =
R

d
D

x tr

– 3 –
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vanishing energy. In that case there is no scale in the problem since the coupling constant g6

is dimensionless in d = 3. Therefore the form of the solution is determined by dimensional

analysis up to dimensionless multiplicative constants which can be fixed.2 In this paper

we solve the equations (2.11) in the case of d = 1.

3 Classical analysis

In this section we consider a classical version of the large N quantum mechanics. Our main

purpose is to write the EOM in a form that will be convenient for a comparison with its

quantum counterpart. For the same reason we work in the Euclidean signature. We denote

the Euclidean time by τ .

The Euclidean Lagrangian of the system is

L =
1

2

(

∂τ
~φ
)2

+ NU

(

~φ2

N

)

. (3.1)

We consider a phase with an unbroken global O(N) symmetry, which means that the field

configurations we are interested in are of the form

~φ(τ) = φ(τ)
(

1, 1, . . . 1
)

, (3.2)

where the vector on the r.h.s. has N components. For such field configurations the La-

grangian can be rewritten as

L = N
(1

2
φ̇2 + U(φ2)

)

, (3.3)

where a dot is a derivative w.r.t. τ . The Euclidean EOM is

φ̈ =
dU

dφ
. (3.4)

In order to make this equation resemble the quantum one we introduce a classical

analog of the field ρ:

ρcl =
~φ2

N
= φ2 . (3.5)

Then, using the fact that dU
dφ = 2φdU

dρ one can write a differential equation of the third

order for ρcl: ...
ρ cl = 8U ′(ρcl) ρ̇cl + 4U ′′(ρcl) ρcl ρ̇cl . (3.6)

This equation should be supplemented by initial conditions. Suppose that at τ = 0 the field

φ is equal to φ0 and its time derivative is φ̇0. Then the initial conditions for eq. (3.6) are

ρcl(0) = φ2
0, ρ̇cl(0) = 2φ0 φ̇0, ρ̈cl(0) = U ′ (φ2

0

)

+ 2 φ̇2
0 . (3.7)

This is the EOM in the form of (3.6) that will be compared to the quantum one in the

next section.

2In [4] there were also considered approximate solutions of equations (2.11)
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4 Quantum solution

In this section we derive the quantum EOM for the field ρ starting from general equa-

tions (2.11). The main result is that the quantum EOM is again of the form (3.6), but

the initial conditions are different. It will also be shown that a difference in the initial

conditions can be turned into a correction to a potential.

In the case of quantum mechanics eqs. (2.11) reduce to

2U ′(ρ(τ)
)

= iλ(τ), ρ(τ) = G(τ, τ),
(

−∂2
τ + iλ(τ)

)

G(τ, τ0) = δ(τ − τ0) , (4.1)

and there is no need in a regularization.

We are going to consider a rolling of the system from a top of the potential. Therefore

we assume that the fields ρ and λ possess limits when τ → ∞. We will denote the limit of

iλ by m2 and assume in what follows that its value is positive. Then we redefine the field λ:

iλ = iλ1 + m2 , (4.2)

so that the new field λ1 goes to 0 at infinity. In terms of this new field the eqs. (4.1) become

2U ′(ρ(τ)
)

= iλ1(τ) + m2, (4.3)

ρ(τ) = Gm(τ, τ), (4.4)
(

−∂2
τ + iλ(τ) + m2

)

Gm(τ, τ0) = δ(τ − τ0) , (4.5)

where the subscript of G indicates the value of the parameter m at which the Green’s

function is computed.

In one dimension the Green’s function is closely related to solutions of the correspond-

ing homogeneous equation
(

−∂2
τ + iλ1(τ) + m2

)

g(τ) = 0 . (4.6)

Since λ1 vanishes at infinity the solutions of this equation look at infinity as e±mτ (this

approach is similar to that used in [11]). We choose two linear independent solutions g1,2

of the homogeneous equation so that the function g1(τ) goes to 0 as τ → −∞ and g2(τ)

goes to 0 as τ → +∞. We will fix their normalization later.

In terms of these solutions the Green’s function can be written as

Gm(τ, τ0) =

{

α1 g1(τ), τ < τ0

α2 g2(τ), τ > τ0
(4.7)

where the coefficients α1,2 satisfy

α1 g1(τ0) = α2 g2(τ0), α1 g′1(τ0) − α2 g′2(τ0) = 1 . (4.8)

Solving these equations leads to the following expression for the Green’s function:

Gm(τ, τ0) =
1

W (g1, g2)

{

g1(τ) g2(τ0), τ < τ0

g1(τ0) g1(τ), τ > τ0
(4.9)
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where W (g1, g2) ≡ g′1(τ)g2(τ)−g′2(τ)g1(τ) is a Wronskian of the two solutions. It is indepen-

dent of τ and we fix the normalization of the basic solutions g1,2(τ) so that W (g1, g2) = 1.

With this normalization

Gm(τ, τ0) =

{

g1(τ) g2(τ0), τ < τ0

g1(τ0) g1(τ), τ > τ0
(4.10)

and the Green’s function with coincident points (which is equal to ρ) is

Gm(τ, τ) ≡ ρ(τ) = g1(τ)g2(τ) . (4.11)

Using this form of ρ and eq. (4.6) we write the differential equation for ρ:

...
ρ = 4

(

iλ1 + m2
)

ρ̇ + 2 iλ̇ ρ . (4.12)

Now, using (4.3) we get
...
ρ = 8U ′(ρ) ρ̇ + 4U ′′(ρ) ρρ̇ . (4.13)

This equation precisely coincides with the classical equation (3.6). However, this does not

mean that the possible motions of the system are the same, since we need to specify initial

conditions. Eqs. (3.6), (4.13) are of the third order and should be integrated once to be

brought to a usual form of equations of dynamics.

In order to integrate once the eq. (4.13) define a new field in analogy with the classi-

cal case:

Φ =
√

ρ . (4.14)

In terms of this new field a first integral of eq. (4.13) can be written as

Φ̈ =
dU

dΦ
+

α

Φ3
. (4.15)

Here α is an integration constant. In order to fix it consider constant solutions of (4.15).

They are given by extrema of the function

Ū(Φ2) = U(Φ2) −
α

2Φ2
, (4.16)

or if we rewrite it in terms of ρ, by extrema of

Ū(ρ) = U(ρ) −
α

2ρ
. (4.17)

We see that the function Ū is of the form of a general effective potential of the large N

vector model at d = 1, which is given in (2.10). This fixes α = −1/4, and the effective

potential becomes

Ueff(Φ2) = U(Φ2) +
1

8Φ2
. (4.18)

The quantum EOM can be written in terms of the field Φ as

Φ̈ =
dU(Φ2)

dΦ
−

1

4Φ3
, (4.19)

– 6 –
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or, Wick rotating back to the Lorentzian time t,

Φ̈ = −
dU(Φ2)

dΦ
+

1

4Φ3
, (4.20)

This equation by construction correctly reproduces the extrema on the quantum effective

potential (2.10). Other solutions of this equation describe time-dependent processes in the

system.

We have proven that the quantum mechanical EOM for an expectation value of the

field Φ (or ρ) is of a form of the classical EOM but with a corrected potential. Therefore a

classical intuition about a motion of the system applies directly to the quantum case. For

example, a frequency of small oscillations around a minimum of the effective potential is

given by ω2 = U ′′
eff(Φ0), where Φ0 is an expectation value of the field

√
ρ at the minimum

of Ueff . One can also draw a phase portrait on the phase plane which would describe

qualitatively all possible motions of the system. In addition, the quantum mechanical

tunneling is not allowed. This is a consequence of the large N limit. We show this in a

different way in appendix A, where we also show that the tunneling amplitude goes to zero

as πN/2 [(N/2)!]−1.

5 Summary and discussion

In this paper we considered the large N quantum mechanics with an unbroken global O(N)

symmetry. We found that the mean value of the square of the field satisfies a classical

EOM with modified potential (4.18). Since the EOM is purely classical we conclude that

the correction to the potential is the only difference between the classical action and the

1PI effective action which governs the quantum evolution. In particular, there are no terms

with time derivatives, contrary to the case of d = 3, where such terms are present [4]. This

result allows one to compute all characteristics of time-dependent processes in an arbitrary

potential (frequencies of oscillations around minima of the potential, characteristic times

of rolling, the phase portrait etc) by the conventional means of the classical mechanics. It

also follows that the tunneling in the system is suppressed in the large N limit.

A desirable continuation of this work is to find a way to solve the quantum EOM’s

in the case of higher dimensionality. This is much more difficult, however. Although a

reduction of the problem to a one-dimensional case is always possible (assuming that the

solution we are looking for depends only on time), an expression for the field ρ in terms of

solutions of a homogeneous eq. similar to (4.6) will in general involve an integral over a

mass, a fact that significantly complicates a computation.

Acknowledgments

I thank S. Elitzur, E. Rabinovici and M. Smolkin for discussions and useful comments.

A Absence of tunneling

In this appendix we use our results in order to show that there is no tunneling in the system

if the global O(N) symmetry is unbroken.
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As shown in section 4, the dependence on time of the expectation value of φ2 is

governed by the classical EOM with the effective potential (4.20). Therefore, if the field

is at a minimum of the effective potential the value of < φ2 > cannot change, and the

tunneling is impossible. In order to see this in a different way we change our point of

view and interpret our problem as a problem of a motion of a particle of mass 1 in an

N -dimensional space with a spherically-symmetric potential NU(r2/N). Components of

the field ~φ are interpreted as coordinates of the particle. We consider a situation when the

global O(N) symmetry is unbroken, which means that the wave function of the particle is

spherically symmetric (s-wave). The radial Schrodinger eq. is

−
1

2

1

rN−1

d

dr
rN−1 d

dr
Ψ(r) + NU

(

r2

N

)

Ψ(r) = E Ψ(r) . (A.1)

Now make the following redefinitions: Define a radial wave function as

f(r) = r
N−1

2 Ψ(r) , (A.2)

introduce a new variable ξ = r√
N

and assume that N ≫ 1. The eq. (A.1) becomes

−
1

2N2

d2

dξ2
f(r) +

[

1

8 ξ2
+ U

(

ξ2
)

]

f(ξ) =
E

N
f(ξ) . (A.3)

This eq. describes a motion of a particle of a large mass N2 in the effective potential (4.18).

All eigenvalues go to 0 as N → ∞, hence the solutions of this eq. have a small spread and

therefore a tunneling is impossible.

Yet another way to see this is to carry out the instanton computation. The amplitude

of tunneling is

Γ = Ae−B , (A.4)

where B is the action of a instanton and the coefficient A is proportional to a volume of

the symmetry manifold [9, 10]. In our case this manifold is an N − 1-dimensional sphere.

Its volume is V = 2π
N−1

2 /Γ(N−1
2 ), and as N → ∞ the volume V → 0. So the tunneling

amplitude vanishes in this limit.
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